世界上最早的聊天机器人诞生于20世纪80年代,这款机器人名为“阿尔贝特”,用BASIC语言编写而成。
1950年,图灵在哲学刊物《思维》(Mind)上发表了“计算机器与智能”的文章,提出了后来经典的图灵测试——交谈能检验智能,如果一台计算机能像人一样对话,它就能像人一样思考。他由此获称“人工智能之父”。
1991年,美国科学家兼慈善家休·勒布纳设立人工智能年度比赛——勒布纳奖,号称是对图灵测试的第一种实践,旨在奖励最擅长模仿人类真实对话场景的机器人。
Alice艾丽斯
1995年11月23日,艾丽斯Alice诞生了。艾丽斯的名字是由英文“人工语言在线计算机实体”的头一个字母的缩写拼成。科学家华莱士将这个聊天程序安装到网络服务器,然后待在一边观察网民会对它说什么。随着华莱士对艾丽斯的升级与艾丽斯聊天经验的日渐丰富,艾丽斯越来越厉害。2000年、2001年、2004年艾丽斯三夺勒布纳奖。艾丽斯是乔治的强劲对手,曾一度被认为是最聪明的聊天机器人。
如何评判一个机器人是否足够智能。
旁观者大多认为一个机器人能够回答的问题多,可以视为较智能,而不论是什么数据结构或算法的机器人,只要堆砌足够大的数据,在回答问题方面都能做到较为相近的正确率,显然,能够回答的问题数量只是代表了这个机器人后台的数据库是否足够大。
而智能不应是比较谁的数据库足够大,智能是多方面的体现:
1、学习能力
这是最根本,也是最难以提升的一条标准,一个可以自动成长、但数据量很小(能够回答的问题较少)的机器人显然是比一个不能自动成长、但数据量庞大(能够回答的问题较多)实用。机器人的本质是帮助人类,减少人类在各个领域的劳动量,如果一个机器人需要人工录入所有的知识,这本身就增加了人类的负担,是与制造机器人的初衷所违背的,这也是当前聊天机器人虽然较热,但应用较少的一个根本原因。
2、数据筛选能力
在拥有了自学习能力之后,机器人是对知识照单全收,还是有选择的学习较为正确的知识,是进一步评判机器人只能程度的一个标准。
如果机器人只能对知识照单全收,这个学习能力是不完整的,机器人还应或多或少拥有筛选能力。
3、自升级能力
在机器人按照设计者的数据结构、算法做到了自学习,并且拥有了一定程度的知识筛选能力之后,自升级能力会成为下一个堡垒。
学习能力的本质是按照设计者的算法将输入数据结构化为这个机器人的数据组织结构。
当“按照初始算法去结构化各类输入数据”之后,经过统计,发现这类规则不能适应某类知识组织形式或某领域知识时(错误率提高),设计者们应考虑如何让机器人尝试调整算法规则和数据组织结构以使得在错误率较高的知识组织形式或领域降低学习的错误率。
而很多早年出现的各类中文机器人,由于使用的都是最原始的“关键词匹配”方式,并没有数据结构的概念,是不应列入“智能聊天机器人”的范畴。